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We present the results of extensive Monte Carlo simulations of the invasion percolation model with trapping
(TIP) with long-range correlations, a problem which is relevant to multiphase flow in field-scale porous media,
such as oil reservoirs and groundwater aquifers, as well as flow in rock fractures. The correlations are gener-
ated by a fractional Brownian motion characterized by a Hurst expadefi/e employ a highly efficient
algorithm for simulating TIP, and a novel method for identifying the backbone of TIP clusters. Both site and
bond TIP are studied. Our study indicates that the backbone of bond TIP is loopless and completely different
from that of site TIP. We obtain precise estimates for the fractal dimensions of the sample-spanning cluster
(SSQ, the minimal path, and the backbone of site and bond TIP, and analyze the size distribution of the
trapped clusters, in order to identify all the possible universality classes of TIP with long-range correlations.
For site TIP withH>1/2 the SSC and its backbone @@mpact indicating a first-order phase transition at the
percolation threshold, while the minimal paths are essentially straigth line$l £dr2 the SSC, its backbone,
and the minimal paths are all fractal with fractal dimensions that depend on the Hurst expoiémt fractal
dimension of the loopless backbone for bond TIP is much less than that of site TIP féf. any

PACS numbgs): 64.60.Ak, 47.55.Mh

[. INTRODUCTION common model, the defending fluid is incompressible and
can be trapped if a portion of it is surrounded by the invading
Multiphase flow phenomena in porous media are relevaniiuid. We call this the trapping IRTIP). The fluids’ com-
to many problems of great scientific and industrial impor-pressibility is, however, only one of several factors that af-
tance, including extraction of oil, gas, and geothermal energfect the evolution of the system as the invading fluid ad-
from underground reservoirs, and transport of contaminantéances in the porous medium. In particular, one must also
in soils and aquifers. To investigate these phenomena, pog@ke into account the ability of the fluids to wet the mte_rnal
network models have been used to represent the porous mgi!face of the mediurfil]. The process by which a wetting
dia, and the concepts of percolation thefity-3] have been fluid is drawn spontaneously into a porous medium is called

employed to model slow flow of fluids through the pore imbibition, while forcing of a nonwetting fluid into the pore
ppace is called drainage. We model the porous medium as a

space. These models include both random bond or site penetwork of pores or sites connected by throats or bonds that
colation[4—9] and invasion percolatiofiP) [10-12. In par- have smaller radii than the pores. In IP, the potential dis-

ticular, IP, which was introduced for describing the evolution 0 o oo o nked according to the capillary pres-

of the interface_ between an i_nvading an_d a_ldefgnding fluid irgure threshold that must be exceeded before a given event
a porous medium, has provided deep insight into such ph&zyes place. During imbibition, the invading fluid is drawn
nomena. In addition, IP is relevant to a host of other probygt jntg the smallest constrictions, for which the capillary
lems, including characterization of optimal paths and domairyessyre is large and negative, and it goes last into the widest
walls in strongly disordered med[d3,14, and even simu-  pores. Displacement events are therefore ranked in terms of
lation of the Ising model at the critical temperatU®5].  the largest opening that the invading fluid must travel
Moreover, IP is one of the simplest parameter-free modelshrough, since it is from these larger capillaries that it is most
which exhibits self-organized criticalifyL 6], another subject difficult to displace the defender. Imbibition is therefore a
of current interest. site IP and, by contrast, drainage in which the invader has
Two different variants of 1P, both motivated by the phys- most difficulty with the smallest constrictions, isbandIP.
ics of multiphase flow in porous media, have been studied so Important differences arise in the structure of the invading
far. In one the defending fluid is infinitely compressible andfluids’ paths depending on whether one considers NTIP or
the invading fluid can potentially enter any region on theTIP. Moreover, the question of the universality class of IP
interface that is occupied by the defending fluid. We refer tohas recently been studied extensivily,17,18. The scaling
this as the nontrapping IENTIP). In the second and more properties of NTIP are believed to be consistent with those
of random percolatiorfRP). For TIP the fractal dimension
D of the sample-spanning clust€8SQ in two dimensions
* Author to whom correspondence should be addressed. Electroni@D) is smaller than that of RIP10]. In 3D no significant
address: moe@iran.usc.edu difference between the fractal dimensions of the SSC for TIP
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and RP has been reported. It was originally arglled] that  [25], percolation with long-range correlations in whi€lfr)
the fractal properties of IP, e.g., the fractal dimension of theéncreaseswith increasingr is completely different from
SSC at the breakthrough poifite., at the point where the those characterized by E({) or (2). One stochastic process
invading fluid first spans the netwadrldo not depend on with a correlation function that increases withs the frac-
whether one simulates a site or bond IP. Recently, howevetional Brownian motionBy(r) (FBM) [26], which has the
it was argued 14,18 that important differences arise in the properties thatBy(r) —By(rg))=0, and

structure of the invading fluid’s paths when comparing site

and bond IP. Portet al.[14] used a mapping from the mini- ([Bu(r)=By(ro)1%)~[r—rq?", 3
mal (shortesk paths in TIP to the optimal paths in strongly
disordered media, and presented numerical evidence that f
gilrz ;2; c:‘rr]ascil n%'{n S]r;s';):r)nrg”azf ttr?aet g}még?laﬁzthh;caél th FBM is t_hat it generates correlations whose ext_erilnﬁ's_
argued that TIP and RP do not belong to the same universall—'te’ by which we mean the extent of the correlations is as
ity class. On the other hand, Barabal9] argued that the arge as the linear size of the system. Moreover, the type of
loopless bond TIRsee belowis in the universality class of cprrelatlons can be t“f‘ed by varyikg If H>1/2, then FBM

RP. It now appears th&20] in 2D IP is characterized biyvo displays persistence, i.e., a trefidr example, a high or low

universality classes, one each for NTIP, and site and bon&‘a‘kJe ?t X 1S I/'kehr/] to be followed by a S_'m"aT trend at
TIP, while in 3D site NTIP and TIP are in the universality +Ax. If H<1/2, then FBM generates antipersistence, i.e., a

class of RP, andsimilar to 2D bond TIP is in the univer- trend atx is not likely to be followed by a similar trend at

sality class of optimal paths in strongly disordered media. x+Ax. For H=l/2_ th_e trace of FBM is similar to that of a
However, most of the IP processes that have been studidgndom walk, and its increments are uncorrelated. The power

so far deal with systems in which there is no correlation. ThePECrUMS(w) of a d-dimensional FBM is given by

nature of disorder in many important classes of disordered

g\{here r=(x,y,z) and ro=(Xg,Y9,29) are two arbitrary
points, andH is the Hurst exponent. A remarkable property

porous media is not, however, completely random, and there S(w)= g 4)
usually are correlations of a given extent. However, the scal- d H+di2’
ing properties of percolation models with finite-range corre- ( E wlz)
lations are the same as those of RP, if the length scale of i=1
interest is larger than the correlation length. Moreover, if the . .
whereag is a constant, andb= (w1, . . . ,wg). This spectral

correlation function decays faster than’, wherer is the
distance between two points adds the dimensionality of
the system, then the critical properties of the systems arec@/€” co
identical with those of RR2,3]. In some other cases, e.g.,

representation also allows us to introduce a cutoff length
=1/, such that

field-scale porous media and aquifers, there are long-range S(@, w,0) = a4 ®)
correlationgsee belowwhose extent is the same as, or com- Teo d H+d/2"
parable with, the linear size of the system. ( Weot 2y wIZ)

In the past, several papers have dealt with percolation i=1

with long-range correlation21—-24). For example, Weinrib ,
and Halperir{22] considered the case for which the correla-BY tuning the cutoff length scale one can control the length
tion function C(r) defined by C(r)={(u(r’)u(r+r")) scale over which the spatial properties of a system are cor-

whereu(r) is a stochastic variable following a distribution "elated(or anticorrelatefi Hence, for length scales</'c,

with long-range correlations, afg denotes an average over they preserve their correlatiorianticorrelationy but for /
all values ofr’, was given by >/ .o they become random and uncorrelated. Note that for

FBM
_r—A

cn~r= @ C(r)—C(0)~r2". (6)
where A <d. They calculated the critical exponents of this
percolation model to linear order ie=6—d and 6=4—\,
and found them to be nonuniversal and dependenton
Prakasktet al.[24] considered a slightly different percolation
model in which the correlation function in &dimensional
system was given by

Since onlyH>0 are physically interesting, for FBNC(r)
increases asdoes. The spectral representation also provides
a convenient method for generatingl@imensional array of
numbers that follow the statistics of FBM. An alternative
algorithm for simulating FBM, based on its integral repre-
sentation, is described by Rambaldi and Pind274.
C(r)~r (=9, 2) A percolation model in which the long-range correlations
were generated by a FBM was first proposed by Saf28.
where —2< (=<2 is a parameter such thatf<2 repre- The motivation for his model was provided by the work of
sents positive correlations, white2<¢=<0 corresponds to Hewett[29], who analyzed the permeability distributions and
negative correlations. They studied this model in 2D andporosity logs of heterogeneous rock formations at large
argued that the fractal dimensi@y of the SSC is the same length scalegof order of hundreds of metersand showed
as that of RP, while other critical exponents of their modelthat the porosity logs in the direction perpendicular to the
were nonuniversal and dependent én bedding follows the statistics of fractional Gaussian noise
Equations(1) and (2) describe systems in which the cor- (FGN) which is, roughly speaking, the numerical derivative
relationsdecreasewith increrasingr. As discussed in Ref. of FBM, while those parallel to the bedding follow the FBM.
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In addition, there is convincing evidence that the permeabilwhich is more appropriate for modelling invasion of a porous
ity distribution of many oil reservoir$l,29] and aquifers medium by a nonwetting fluid. In essence, if the nonwetting
[30] can be described by FBM. In Sahimi’'s model, one firstfluid is about to enter a new site that has two neighboring
generates d-dimensional FBM array using a lattice and as- bonds, filled with the wetting fluid, with end sites that are
signs the resulting correlated numbers to the bonds or sites éifled with the nonwetting fluid, then the invading fluid
the lattice. To construct a percolation model and to preservereaks through the larger of the two bonds. The smaller bond
the correlations between the bordites, one removes those still contains the wetting fluid and is therefore effectively
bonds (siteg that have been assigned tlenallestFBM-  trapped by its two end sites filled with the nonwetting fluid.
generated numbers. We refer to this version of the percolafo simulate the bond TIP, the FBM-generated numbers are
tion model with long-range correlations as the standard perassigned to the bonds of the lattice rather than its sites, and
colation(SP model. Over the past few years, these types othe invading fluid always invades the largest bond at the
percolation models have been studied by a few researcinterface with the defending fluid. This version of TIP gen-
groups[28,31,33. Mourzenkoet al. [33] used this type of erates clusters that are loopl¢48,14,17,18&
model to study conduction in network of fractures with long-  One of the most essential aspects of studying TIP is hav-
range correlations that were generated by a FBM, while, using a highly efficient algorithm for simulation of the invasion
ing a somewhat similar model, Wagnet al. [34] studied process. In this work we used the invasion algorithm recently
invasion of a single fracture. introduced by u$20,37. Since we also study the backbone
However, since IP is a more appropriate model than thef the invasion cluster, i.e., the multiply connected part of it,
SP for studying multiphase flow in porous media, and bewe also used a novel and highly efficient algorithm for iden-
cause field-scale porous media are typically characterized hyfying the backbone. In what follows we describe these al-
FBM- or FGN-type of long-range correlations, in order to gorithms.
describe multiphase flow in such media one must study IP in
which the correlations are generated by a FBM FGN).
Knackstedtet al. [35] already used such a model to study 1. SIMULATION ALGORITHM
mercury porosimetry in correlated porous media, an impor-

tant process that_is used for charact_erizing th_e pore structugs . trapped regions is done after every invasion event
of a porous med'“”?- The_ goz_il of this paper IS to report theusing a Hoshen-Kopelman algorithf8,3], which traverses
resu:jts. thsuih an lmvestlggtlon. fV\;}e a”rDe pa:jtlclula_rlﬁl l'nter'the entire lattice, labels all the connected regions, and then
ested in the fractal properties of the 1P model with long- nly those sitegbonds that are connected to the outlet face
range correlations, as they may shed light on the nature re considered as potential invasion siiesndg. A second

mu_:_tLphalse fI(;Whphenomena ir; flileld-sclalesporclnlus rr:jedia._b sweep of the lattice is then done to determine which of the
e plan of this paper is as follows. In Sec. Il we describe, o niia| sitegbonds is to be invaded in the next time step.
the TIP model that we study in this paper. An important

t of studvi P del | Hicient simulati Thus, each invasion event deman@{N?) calculations,
aspect of studying any model 1S an etlicient simulalion,,;nareN is the number of siteébonds in the lattice. This is
algorithm, so that large lattices can be used. Thus, we d

ibe in Sec. Ill the alaorithms that di tud Ieﬁighly inefficient for two reasons. First, after each invasion
SCrbe In Sec. € algorithms that we used in our study. N, e only a small local change is made in the interface;

Seg. IV'we describe how the S'mUIat'On results are analyzeﬁemplementing the global Hoshen-Kopelman search is unnec-
while the results are presented and discussed in Sec. V.

. é'ssary. Second, it is wasteful to traverse the entire lattice at
nally, Sec. VI summarizes the paper. each time step to find the most favorable stiend on the
interface since the interface is largely static. We tackle the

II. INVASION PERCOLATION WITH LONG-RANGE first problem[20,37 by searching the neighbors of each

CORRELATIONS nevv_Iy invaded sngéboncb to check for trapping. '_I'hls is ruled
out in almost all instances. If trapping is possible, then sev-

We now describe the TIP model with long-range correla-eral simultaneous breadth first “forest-fire” searches are
tions that are generated by the FBM. We first generate ased to update the cluster labelling as necesgz8} This
d-dimensional FBM array and assign the resulting numbersestricts the changes to the most local region possible. Since
to the siteqor bonds of the d-dimensional lattice. The FBM each site(bond can be invaded or trapped at most once
array can be generated either by the methods mentionedliring an invasion, this part of the algorithm scale©#h!).
above, or by the successive random addition method of VVosghis cluster searching method has some similarities with the
[36]; we used the latter method. The FBM-generated num&perimeter scouting” algorithm for 2D clusters. In this al-
bers are then taken as the effective rddii permeabilities gorithm one checks whether the most recently invaded sites
that are proportional to the square of their radii the sites  could have been trapped in the interior of the cluster. If so,
or bonds. The simulation of IP in this lattice is then the sameoriented walks are started on the just invaded site, pointing
as in the standard TIP, namely, at each time step duringway from it to the neighboring sites, which are those that
invasion, the invading fluid attempts to invade the interfaceneither belong to the cluster nor are candidates for invasion.
site with the largest number. To investigate the effect of arhe walks continue until all but one of them have again
finite correlation length on the results, we also introduce theeached the site of origin. The growth sites visited by these
cutoff length scale’,, (see aboveand study its effect on the walks are then eliminated from the list of active sit&9)].
fractal properties of TIP. In the discussions below the cutoffThis method is effective in 2D but not as efficient in 3D. Our
length scale”’;, is measured in units of the lattice bonds. method differs from it by searching cluster volumes rather

We also studied a variant of TIP, namely, the bond TIPthan perimeters, and incorporating local checking to mini-

In the conventional simulation of IP,10-13 the search
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mize cluster searching and is thus equally effective in 3D. (i) We stop if the branch points list is empty. Otherwise,
The second problem is solved by storing the sftends  we perform a depth-first search from the last site in the
on the fluid-fluid interface in a list, sorted according to thebranch points list, flagging all the sites that are visited. Dur-
capillary pressure thresholdr size needed to invade them. ing the search, unexplored branch points are added to the
This list is implemented via a balanced binary search tree, sBranch points list, while another list tracks the sites that have
that insertion and deletion operations on the list can be pefeen flagged as visited. We then perform an important opti-
formed in Inf) time, wheren is the list size. The sites mization during th(_e depth-first segrch: If there are multiple
(bonds that are designated as trapped using the proceduré%’anCh_es from a single site, thg site labeled as being closest
described above are removed from the invasion list. EackP the inlet face is always the first to be explored.
site (bond is added and removed from the interface list at (i) The depth-first search terminates when one of two

most once, limiting the cost of this part of the algorithm to conditions are satisfied1) the search contacts the backbone
O(N In(n)). Thus, the execution time fdX sites (bonds is again at a different site from whence it started, in which case

dominated(for large N) by list manipulation and scales at the sites in the visited-sites list are flagged as backbone sites,
most asO(N In(N)) [40]. or (2) it retreats back to its starting site, at which point there

While the execution time is approximate®(N In(n)), in ~ Will beé no sites left in the visited-sites list.
practice the time and memory requirements depend on the (V) The algorithm continues at stéjp).

total number of lattice sitegbonds and those forming the In this way the elastic backbone, the transport backbone,
cluster boundary. For example, we find empirically that forand the dangling ends of the SSC are all identified. Examples

3D TIP the execution time scales B&2* and the memory of execution times for this algorithm running in 3D on a 533
cMHz 21164A Alpha processor are 0.02 and 0.12 CPU sec

Jor 32° and 64 lattices, respectively. The cluster on which
trapping cluster of X 1CP sites is grown on a 181181 these calculations were performed was a SSC generated by a
x 181 lattice in 12.0 sec, using 120 Mbytes of memory,NT|P' When compared with the timings reported in Réb]

while in 2D a cluster of 5 10° sites is grown on a 2000 on an equivalent hardware, our algorithm is faster by a factor

%2000 lattice in 12.0 sec, using only 52 Mbytes. We usedf 7 for the 32 lattice and by a factor of 12 for a 128attice,
Ld-1x 2| |attices ind diménsions with reflecting boundary and thus the larger the lattice size, the more efficient is our

conditions on the edges. Cluster properties were measuréadgor'thm'
within the centralL? region.

We have also used a new optimized algorithm to identify IV. ANALYSIS OF THE RESULTS
the minimal path length, the sites comprising both the elastic

backbong41], i.e., the set of the sites that lie on the union_oftwo different methods. One was based on the scaling of the
all the shortest paths between two widely separated pointgy siers’ or paths’ mass with their linear size. For example,

and the usual transport backbone, so that the baCka'TSr the SSC at the breakthrough point, i.e., when the invader
search and computations do not affect the overall executiop percolates through the network, we must have

time of the algorithm. In the past, numerous algorithms have
been proposed in the literatufé1—-44], some of which are M oc P, (7
either too slow or limited to 2D systems. For example, a
recent method45] that uses a matching algorithm takes whereM is the mass of the cluster, i.e., the number of in-
longer to identify the backbone than the IP algorithm usedsaded sitegbonds in the networkL is the linear size of the
here takes to generate it. sample, and; is the fractal dimension of the SSC. For this
An alternative method was recently presented by Babatype of analysis, the largest lattice size that we used in 2D
lievski [38], based on depth-first searching out from the elaswas L=8192, with the results averaged over*1@aliza-
tic backbone[41] to identify loops of occupied sites. This tions, while in 3D we usedl =512 and averaged the results
method works well for low-connectivity clusters but loses over 5000 realizations.
efficiency where the SSC is composed of large well- The second method of analyzing the data is based on
connected regions, as happens in IP with long-range correlatudying thelocal fractal dimensions and their approach to
tions studied her¢see below. In the latter case, some sites their asymptotic value adM becomes very large. For ex-
need to be visited numerous times before their status is deimple, for the SSC the local fractal dimensibp(M) is
cided. The method used here is an optimization of this indefined as
which the distance on the cluster from the inlet face to each
cluster site is used to guide the depth-first search. In this dinM
algorithm, there are three major steps that are as follows. D¢(M)= dinR.’ ®
(i) Using a breadth-first search algorithm, we label each 9

site in the cluster with its “cluster distance” from the inlet \where Ry is the cluster's radius of gyration. According to

face, and then use this information to burn backwards fronfinite-size scaling theoryFSST), D{(M) converges to its
the outlet face and identify the elastic backbone. At the samgsymptotic value for larg# according to

time, we construct the “branch points list"—a list of all the

cluster sites that are adjacent to the elastic backbone but are [Di—Di(M)|cM ™, 9
not part of it. The branch points list is ordered with the sites

closest to the inlet face listed first. Note that the elastic backwherew is a priori unknown correction-to-scaling exponent,
bone sites are part of the backbone. and thus it must be estimated from the data. Moreower,

cluster site. On a 500 MHz 21164A Alpha microprocessor,

To estimate the various fractal dimensions, we employed
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[¢]

FIG. 1. Typical cluster configurations for site TIP in 2D. The results are for, from top to boten®.2, 0.5, and 0.9. The figures on the
left show the results for a cutoff length scalg,=0, while those on the right show the clusters fa,=8. The light gray background is
the sample-spanning cluster, the dark gray is its backbone, and the black area shows the minimal paths.

may depend on the model that we study and the quantity wi estimateboth D; and w simultaneouslyBy so doing we
estimate. Combining Eq€8) and (9) (and takingRyxL) also avoid statistical pitfalls of the two-stage process used by
gives a d!ffer_entigl equation that can be solved analyticallySchwarzeet al.[17] in which the data are first divided into
The solution is given by various bins and¢(M) are estimated by numerical differ-
©— | wD; entiation, and therw is varied until Eq.(9) provides the
C+ DMP=coL ", (10 “best” straight line fit of the data whe® (M) is plotted vs
wherec; andc, are constants. Equatiai0) is new and is M~ . Note that the choice ob is very crucial to accurate
given here for the first ime. We then fit the data to Frf)) ~ estimation of the fractal dimensions. In addition, we also
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Since the fractal dimensio3; andDy, of the SSC and its
backbone ind dimensions are given bp;=d—g/v and
Dy=d-B,/v, wherev is the correlation length exponent
and B and 3, are the critical exponents that characterize the
fraction of the invaded sites in the SSC and its backbone, the
compactness of these clusters implies that eitherc or 8
= B,=0 (or both, both of which imply that the percolation
transition at the breakthrough point, both in the SSC and its
backbone, idirst order, in contrast with RP, uncorrelated IP,
and also the SP models with long-range correlations in which
the correlation functionC(r) decreases with increasing
[22-24, in all of which the transition at the percolation
threshold is second order. Our results are similar to those of
Sahimi and Mukhopadhyaj82] who reported that the SSC
and its backbone for the SP model with FBM-generated cor-
relation are compact fad > 1/2. Isichenkd46] presented an
analytical argument that indicated that, for SP amy O
<H<1 in 2D,D;=2.

For H=0.5 the SSC and its backbone appear to have
started taking on a noncompact shape, with the sizes of the
trapped clusters becoming much larger than those foHthe
=0.9 case. If we introduce the cutoff length scalg,=8,
then the trapped clusters become even larger, and/for
>/, the clusters are again fractal objects. Fb=0.2 the
SC and its backbone are fractal objects, with or without the

FIG. 2. Typical cluster configurations for site TIP in 2D but
without any correlations. The colors are the same as in Fig. 1.

obtain reliable estimates for the confidence intervals of th
model parameters, as discussed below. For this type a

analysis, the 2D results were averaged over 250 000 realizél:-umff length scale’s,, although the fractal dimensiddiyip

tions. while in 3D the results were averaged ove? f@al- of the minimal path still deviates little from unity. Note that,
izatidns 9 in all the cases values of the fractal dimensions for the SSC

and its backbone with and without the cutoff length scale are
different. While for the case of no cutobi; andD, (for H
V. RESULTS AND DISCUSSION <1/2) depend o, with the cutoff length scale these fractal
We first discuss our results in 2D, after which the resultsdimensions are, at large length scales, the same as those of
in 3D are presented and discussed. 2D site TIP W|thogt correl_amons. These are confirmed by our
numerical analysis described below. We note that, even for
0<H<1/2 the fractal dimensioD ;, of the minimal paths
appears to be only slightly larger than unity. For example,
Figure 1 shows the configurations of the SSC at the breakeven forH=0.2 shown in Fig. 1, the path seems to be almost
through point in the site TIP model, its backbone, and thea straight line.
minimal path for three values of the Hurst exponentFor Therefore, for site TIP, if there is no cutoff length scale
the sake of comparison, we present in Fig. 2 the configurafor the extent of the correlations, thdth=1/2 appears to
tion of the SSC for site TIP without any correlatiofise.,  signal a transition from a system with nonfractal clusters
/:o=0). Figure 1 shows the results for two distinct cases. In(H>1/2) to one with fractal clustersH<1/2). Moreover,
one a cutoff length scal€.,=8 has been introduced for the for H<1/2 all the fractal dimensions depend bin(see be-
extent of the correlations, while in the second casg=~, low).
i.e., the extent of the correlations is as large as the linear size The results for bond TIP are different from those for site
of the system. As can be seen in Fig. 1,Hasncreases, the TIP. Figure 3 presents the configurations of the SSC, its
compactness of the SSC and its backbone also increases. Hmckbone, and the minimal paths for bond TIP for the same
H=0.9 the SSC and its backbone are completely compact;alues of the Hurst exponenk$ and the cutoff length scale
with very small trapped clusters in their interior. However, /., as those in Fig. 1, while Fig. 4 shows the same clusters
when the cutoff length scalé, is introduced in the system, for the same model but without any correlatiofi®., /¢,
the shapes of the clusters change drastically. While at length 0). It is clear that the configurations of the clusters in the
scale/'</ ., the clusters are still compact, fat>/"., they  two models are completely different. In particular, the back-
no longer have a compact structure. Instead, they are fracthbne of bond TIP does not contain any closed loops and is in
objects with fractal dimensions that are strictly less than Zhe form of a long strand, which is in striking contrast with
(see below. Interestingly, although the cutoff thickens the the backbone of site TIP that is compact fde>1/2, and
invading front, local trapping still occurs while the fluid is while it is a fractal object foH <1/2, its fractal dimension is
advancing. Note that foH>1/2 the minimal path is not still quite large (see below. However, although the back-
unique: while one can fix its length, one finds many suchbone of bond TIP is loopless and looks like a long strand, as
paths with the same length, which is why the set of all theour analysis discussed below indicates, its fractal dimension
minimal paths with a fixed length is a thick bafsee Figs. D,y is always greater than one fany value ofH. A com-
1(e) and Xf)]. parison of Figs. 2 and 4 also indicates that, even in the case

A. Results in two dimensions
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f].

FIG. 3. Same as in Fig. 1, but for bond TIP.

of no correlations, the structures of the clusters for bond and
site TIP are very different, which has also been reported
previously[13,14,18,20)

We now present the analysis of our numerical results and
the resulting fractal dimensions for the various clusters.
Since forH>1/2 all the clusters are nonfractal, we discuss
the results only foH<1/2. Figure 5 presents typical results
for the mass of the clusters fa#t =0.1 and their analysis
using Eq.(7). They exhibit precise scaling behavior over
three orders of magnitude variationslinThe top two curves
in Fig. 5 present the results for the SSC and its backbone in
site TIP. ForH=0.1 Fig. 5 yieldsD;=1.85, while for the
backboneP,=1.8, slightly smaller tha;. The fractal di-
mensionD ., of the loopless backbone of bond TIP is much
smaller tharD; andD,, and forH=0.1 shown in Fig. 5 we
find thatD ,,=1.16. Figure 5 also yieldB ;;=1.08, only

FIG. 4. Same as in Fig. 2, but for bond TIP.
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0721

0.70

slightly larger tharD ,,;,= 1.0 for a straight nonfractal line.
To obtain more precise estimates of the fractal dimen-
sions, we used Eq.10) and reanalyzed the data. Figure 6
shows typical results for the SSC in site TIP fér=0.1. The
top figure shows the results of fitting EQ.0) to the simula-
tion data. The fit is effectively perfect and much more accu-

0.66

0.64

rate than what can be attained with a simple power law, Eq. 0.62 L , L . L

(7) In fact, one cannot diStinguish the fitted results from the 1.8570 1.8580 1.8590 1.8600 1.8610 1.8620 1.8630
actual simulation results. This is perhaps not totally surpris- Dy

ing since four parameters have been used to fit the data. The

bottom figure shows the confidence region elliptg of the FIG. 6. Top: Fit of the simulation results for the mass of the

fitting parameterso (the FSS exponenandD; (the fractal ~ sample-spanning cluster of 2D site TIP to Ef0) for H=0.1. The
dimension. The solid (dashed line shows the 68%99%) data and the fit are indistinguishable. Bottom: Confidence ellipse for
confidence level. It can be seen that although the confidende finite-size scaling exponent and the fractal dimension of the
level for the exponent is quite broad, this does not translat&luster- The solid(dashed curve shows 68%(90% confidence
into poor estimates fob; and w. The best fit of the data is '€Vel

obtained withw=0.675 andD;=1.8599, slightly larger, but

much more accurate, thab;=1.85 obtained from Fig. 5. backbone is much more compact and completely different
For comparison we show in Fig. 7 the analysis of the datdrom the minimal paths.

using Egs.(8) and (9), which calculates the locdD;(M) Figure 10 shows typical results for the backbone of bond
numerically and then fits the results to Ef) to estimateD;  TIP andH=0.1. Confirming the qualitative features of Fig.
and w. This type of analysis yield®;=1.862 andw=0.5.

This estimate ofv is quite smaller than what we obtain from

Fig. 6. 1.90[ ' ' ' ]
Figure 8 presents the analysis of the simulation results for ]

the backbone in site TIP artdl=0.1. In this case, the best fit " 1

of the data is obtained with=0.573 andD,=1.8193, dis- 2 s %\ ]

tinctly lower thanD=1.8599. Figure 9 depicts the results = L ‘%-\ ]

for the minimal path of site TIP foH=0.1, from which we =~ - \\'\ﬁ 1

estimate thatw=0.34 and D,j,=1.0379, not consistent = I T 1

with, but more accurate thab,,;,=1.08 obtained from the £ 1.80 - \"'\.\

analysis of the path’'s mags(Fig. 5). Of course, the higher < i T !

accuracy of the estimate obtained from Fig. 9 is due to taking I < S ﬁ

into account the effect of finite-size corrections. Note that, i

unlike TIP without correlation$20], and as a consequence of 1.75 : ' —

the correlations, strong differences exist between the back- 0.00 0.02 vpes  ° 0.08

bone and the minimal path structures. While for site TIP
without correlationdocal trapping thwarts extensive growth  FIG. 7. Numerical analysis of the simulation results for the mass
of the backbone off the minimal path, leading to a greatlym of the sample-spanning cluster of 2D site TIP Fbr=0.1, using
diminished backbone whose fractal dimensisee Table)l  Egs.(8) and(9). Large symbols are the data, while the small ones
is close to that of the minimal path, for the present case thare plus and minus one standard deviation in the data.
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’ FIG. 9. Same as in Fig. 6, but for the minimum path.

FIG. 8. Same as in Fig. 6, but for the backbone.

with H and is only slightly larger than one. The second dif-

(ﬁrence is that values of all the fractal dimensions depend on
whereas for the case of IP without correlations they are

versal. Figure 12 summarizes the dependence on the

3, the backbone of this model is completely different from
that of site TIP. Indeed, as mentioned above, the backbone
bond TIP does not contain any closed loops of the invadeglr’“

bonds and is somewhat similar to a long strand. From thigy, .ot exponentt of the fractal dimensions. For comparison

figure we obtainD ,=1.16 andw=0.975. We emphasize ;e compile in Table | the most recent estimates of the same
that, had we used Eqe8) and (9), the estimates of these ga0a| dimensions for NTIP and TIP without correlations

fractal dimensions, and especially their corresponding valu?zo]_ Finally, as was mentioned in Sec. IV, the correction-to-

of w, would have been quite different. For example, for thescaling exponents is a model-dependent quantity that de-

backbone of TIP witiH=0.1, we would have obtained  ends’on both the particular fractal dimension clustey of
=0.7, much lower thamw=0.975 that Fig. 10 yields.

To show that forH>0.5 the SSQand its backboneare
compact, we present in Fig. 11 the results Fb=0.9. As
before, we obtain an excellent fit of the ddtap figure, and
D;=1.991 andw=0.41, which confirm our assertion.

TABLE |. The most accurate estimates of various fractal dimen-
sions for IP in 2D and 3D, and their comparison with those of
random percolatiofRP) [20].

Summarizing the results in 2D, we find that fonyvalue  pModel Dimin Dy
of H and a finite cutoff length scalé., for the extent of the 2D
correlations, all the clusters of interest are fractal at length
scales/> /., with fractal dimensions that are the same asNTIP 1.1293-0.0010 1.6422.0.0040
those of the same clusters in the corresponding IP modefSite TIP 1.203:0.001 1.21%0.020
without any correlations. For length scalés</ ., the clus- Bond TIP 1.21760.0007 1.2170.0008
ters’ structures are similar to those f6g,=. In this case RP 1.130%0.0004 1.64320.0008
we find that forH>1/2 the SSC and its backbone in site TIP 3D
are compact, and that the minimal path is a straigbhfrac-  Site NTIP 1.3697% 0.0005 1.8680.010
tal) line. Moreover, we find that foany H<1/2 all the clus-  Site TIP 1.3697% 0.0005 1.86%0.005
ters of interest are fractal, but with two major differencesBond TIP 1.4580.008 1.458 0.008
with the case of IP without any correlations. One is that therp 1.374-0.004 1.87-0.03

fractal dimensiorD ,,;, of the minimal path varies very little
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FIG. 10. Same as in Fig. 6, but for the backbone of bond TIP. -
FIG. 11. Same as in Fig. 6, but fét=0.9.

interest to be estimated and also on the Hurst expoHent
Figure 13 presents the dependencewobn H for the four  spectively, from which we obtaib;=2.771 (w=0.52) and

fractal dimensions. Dp=2.745 (@=0.255). These results indicate that in 3D
and forH<1/2 the SSC and its backbone are fractal with
B. Results in three dimensions fractal dimensions that are nearly identical. The difference

between the two fractal dimensionssmallerthan what we

Similar to the 2D case, we find that in 3D all the clusters : s s
’ found in 2D (see abovewhich is surprising, because one
are compact foH>1/2. Therefore, once agal=1/2 rep- ( ® P g

resents a sort of transition point from compdaéor H
>1/2) to fractal clustergfor H<1/2). However, we find that
there are significant qualitative differences between the
structure of the various clusters, which we now discuss.

We first consider the fractal structure of the clusters. To
make a direct comparison with Figs. 5-10, we present the 2l A
typical results forH =0.1. Figure 14 presents the analysis of
the clusters’ masses according to EQ. From the best fit of
the data we obtaid¢=2.72+0.01, practically identical with
Dp=2.71+=0.01. We also find thaD,=1.29+0.01 and
Dmin=1.09+ 0.02. These results indicate théi) the SSC v ¢ ° ° e
and its backbone are practically identical, which is a surpris-
ing result, and2) similar to 2D, the fractal dimensioD ;,
of the minimal path is very close to 1. Indeed, a closer in-
spection of the results indicates that Ed) is not adequate ' . )
enough for yielding an accurate estimate of any of the fractal ° 02 0.4 0.6 0.8 1
dimensions. "

Therefore, similar to 2D, in order to obtain more precise FIG. 12. Dependence of the various fractal dimensionsidar
estimates of the fractal dimensions, we used the asymptot@D TIP. The results are for the site sample-spanning clugtier
analysis of the fractal dimensions using E40). Figures 15 angles, site backbondsquarel backbone of bond TIRcrossel
and 16 show the results for the SSC and its backbone, reand site minimal path&iamonds.

Fractal Dimension
x
x
x

o
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FIG. 13. Dependence of the finite-size scaling expomenn H
in 2D. Symbols are the same as in Fig. 12.

would intuitively think that the probability that some regions
of the SSC to be deadends off the backbone is much highe
in 3D than in 2D. In their study of standard percolation with
long-range correlations that were generated by the FBM, Sa-
himi and Mukhopadhyaj/32] also reported that the SSC and
its backbone are very similar, although due to the small lat-
tice sizes that they used, they could not quantify the similar-
ity between the SSC and its backbone. E
Figure 17 presents the results for the minimal path. In this ~ ,F

case we obtaifD ,;,=0.985 (w=0.21), indicating strongly 270 272 274 276 278 280 282 284
that, in 3D the minimal path isot fractal forany H Recall Dy

that we found in 2D that the fractal dimensi@n,;, is only

slightly larger than 1. Therefore, it is possible that the same FIG. 15. Same as in Fig. 6, but in 3D.

is true in 2D, namely, that the asymptofieery largeL) o5 ofH. The results are summarized in Fig. 19. Moreover,
value of fractal dimensio y;y is 1, but one must use very gimiiar to 2D, the exponend also depends on the cluster
Iargg lattices in order to reach this asymptotic value. studied and also ohi. Thus, we present in Fig. 20 the de-
h'.:'ﬁu.rells slhowg,fthe reshL_Jlts for thg biaackl)one of bocr;d TIPpendence ofv on H for the three cluster structures studied.
which is loopless, from which we obtaiD,~1.303 andw As discussed above, since we have introduced a cutoff

=0.0. the thgt, as the top figure indi.cat.es, .in this case th?ength scale/.,, one should see a clear crossover from a
asymptotic regime is reached fbr=40, indicating very fast | - e of the fractal dimension for length scalés /., that

convergence to the true value.. . corresponds to that of TIP without any correlations, to a

Since forH <1/2 the fractal dimensionBy, Dy, andD, compact cluster foH>0.5, or to anH-dependent fractal
depend orH, we have calculated their values for a few val- dimension forH<0.5, for /</.,. Figure 21 shows this
analysis for the 2D backbone of TIP with=0.9 and/ .,
=256. The crossover is clearly evident. The slope of the plot
I at short length scales B,=2, indicating a compact back-
6 ] bone, while at large length scales there is a crossover to
Dy<2, confirming what we asserted above.

[ ] C. Size distribution of the trapped clusters
P ] Another important topological property of percolation
i ] networks is the average number of clusters of siza IP the

invader grows only in a single cluster along a path of least
resistance. Therefore, at the breakthrough the invader forms
no disconnected clusters. However, for IP with trapping, one
can continue the invasion process beyond the breakthrough
FIG. 14. Scaling of the masd of the clusters with the length point to a second percolation threshold at which the defend-
scaleL for 3D TIP with H=0.1. The results are, from top to bot- ing phase consists only of isolated clusters and the invasion
tom, for site sample-spanning cluster, site backbone, backbone shust cease. We consider the cluster size distribution for the
bond TIP, and site minimal paths. trapped defender clusters on correlated lattice at this thresh-
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old. Normally, one studiesg(s), the number of clusters of so that in a logarithmic plot oNg(s) vs s the slope of the
size s (where a cluster’s size is simply the total number of straight line would be 2 7=—0.19. For the present corre-

sites that it contains In general, one expects to have lated cases, however, we have two distinct regini®sFor
. H>1/2 the SSC is compact, and we do not expect to have a
ny(s)~s~"f(s/(s)), (1D scaling law similar tq11) or (13). (2) ForH<1/2 the SSC is

a fractal object, and therefore a scaling law similafli) or
(13) should hold except that, sind®¢ is nonuniversal and
depends orH, we may expect to also have nonuniversal
values ofr that depend ormd. Moreover, if we introduce a

wheref(x) is a scaling function, an¢s) is the mean cluster
size, defined by

2 s2ng(s) cutoff length scale”;,, for the extent of the correlations, then

(s)= s _ (12) for length scaled. >/, we expect to recover the behavior
D with no correlations, whereas fdr</., we should have
2, SN(s) one of the above two cases, depending on the valug. of

To check this, we have studied the scalinghyfs) for

However, because of large variations of the clusters’ convarious values of and the cutoff length scalé.,. Shown
figurations among different realizations, a more accurate wai Fig. 22 is the distribution of the trapped clusters for
of studying the cluster size statistics[#8] by investigating =0.2 and various values of the cutoff length scélg . As
Ng(s)=Ss-shs, the average total number of clusters with acan be seen for the case of no correlatitires, /,=0) one

size greater than a given sizeIn general one expects to obtains good agreement with the expected behavior. How-
have ever, as/ ., increases, the cluster size distribution starts to

deviate significantly from the random case. This behavior
Ng(s)xs?™ 7, (13)  becomes even clearer when we study a system iithl/2,
an example of which is shown in Fig. 23, where we show the
If there are no long-range correlations in the system, then theesults forH =0.8 and various cutoff length scales. For large
exponentr is universal. Since the 3D SSC for both site and/,, it is difficult to obtain any sort of scaling, which is
bond TIP with no long-range correlations has the same fraceonsistent with our discussion.
tal dimension as RP, then for this casesd/D¢+1=2.19, These results are corroborated if we study the size of the
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strongly on the presence of the correlations. In a random
system, trapping occursnly near the end of the invasion
process, where over 80% of the total invading fluid is present
and less than 5% of the defender is trapped. In contrast, with
a cutoff length scales of, say.,=16, over 30% of the de-
fending fluid is trapped at 80% invader saturation.

VI. SUMMARY AND DISCUSSION

Using highly efficient algorithms for invasion percolation
and its backbone, we have studied trapping IP with long-
range correlations. The correlations are generated by a frac-
tional Brownian motion. For Hurst exponerits>1/2, i.e.,
when the correlations are positive, the sample-spanning clus-
ter and its backbone are compact, while f8x<1/2, i.e.,
when the correlations are negative, they appear to be fractal.

lations indicate that for smalf, there is only a small effect Therefore H=1/2 signifies a sort of transition from a com-
on the distribution of the trapped clusters; this is also evidenpact to a fractal system. Since compact clusters imply first-
in Fig. 22. For intermediate values of., we observe a order phase transitions]=1/2 can be interpreted as the
higher proportion of the trapped sites lie in larger trappedpoint at which one has a crossover from a first-order phase
clusters. As”.,— =, one single cluster contains over 30% of transition (for H>1/2) to a second-order phase transition
the trapped sites. The trapping dynamics also dependdor H<1/2). In the latter case all the fractal dimensions of

Fractal Dimension
N
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FIG. 19. Same as in Fig. 12, but in 3D.

the model, as well as the exponent that characterizes the
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FIG. 21. Crossover from a compact backbone at small length
scales(diamond$ to a fractal backbone at large length scales
(crossesfor 2D site TIP withH=0.9. The cutoff length scale for
the correlations ig”;,= 256.
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FIG. 23. Same as in Fig. 22, but féet=0.8.

Elsewhere[49] we have discussed the implications of
these results for oil recovery operations and extraction of the
scaling properties of its cluster size distribution, depend orirapped oil blobs in the reservoir.
the Hurst exponentl.
Thus, gnlike L_mcorrelated 2D IP, which is characterized ACKNOWLEDGMENTS
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